Cleveland Mall / North Coast Harbor
Land Bridge Proposal

"Achieving the Ultimate Goal of Merging the Lakefront with Downtown"
OVERVIEW

The Green Ribbon Coalition is proposing that the City of Cleveland, Cuyahoga County and other stakeholders consider the building of a land bridge from The Mall to North Coast Harbor versus other types of structures that have been put forth. The GRC believes that a larger vision for the harbor area should be explored that includes opportunities like a wider land bridge, by re-routing or even eliminating the Memorial Shoreway east of West 3rd Street or relocating the Browns Stadium. However, if these options are found to be unfeasible or their timelines too distant, GRC is recommending that the design guidelines and concept plans for a land bridge as presented in this document be considered for further study, in order to capture the cultural and economic opportunities that such a structure would enable over the next several decades.

Extending the Cleveland Mall northward from the 1903 Group Plan has been discussed for decades. However, the infrastructure separating the city’s civic center from its lakefront has been one of the city’s greatest land use challenges. (See figure 1) Over the years, a range of designs have been proposed combining different bridge and building structures to close this gap. Among these is the recently proposed cable-stayed bridge.

Other cities are burying unsightly infrastructure while working to connect their city centers with their waterfronts. “Iconic” structures such as the proposed cable-stayed bridge are better suited where the features they traverse are meant to be highlighted, such as a river or sea channel. Cities like Chicago, Seattle and Philadelphia are capping their railways and freeways while re-connecting their downtowns with their waterfronts. Cleveland should do the same.

The Green Ribbon Coalition has studied several cities that had similar challenges as Cleveland with a freeway or other infrastructure obstructing access to their historic waterfronts, including the City of Philadelphia. Conceptual designs released in 2014 show where a proposed waterfront park will cap Interstate 95, reconnecting Philadelphia’s City Center with its riverfront. (See Figure 2) The 12-acre Penn’s Landing project is part of a fully funded $225 million development initiative that includes recreational trails along the river. This and similar projects throughout the country are excellent examples that Cleveland can and should be learning from.

Figure 1: View of North Coast Harbor from the north end of the Mall

Figure 2: Concept Design of Penn’s Landing project, Philadelphia
Over the last few years, the Green Ribbon Coalition has studied extensively the obstacles and opportunities that arise in connecting Cleveland’s civic center with its lakefront. In doing so, the GRC established the following objectives and design guidelines towards the development of a concept plan:

- The Group Plan and the Mall should connect with North Coast Harbor via a “land bridge” that acts as a seamless extension of both areas while hiding the rail and highway infrastructure separating them (See Figure 3)
- A consistent, gradual slope should be maintained along the length of the structure while providing unobstructed views of the lakefront and the buildings around the harbor (See Figure 4)
- The structure should respect the existing sight and structural lines of the Mall, the Inner Harbor, and their adjacent buildings
- The bridge should carry most of the width of the Mall and its promenades northward to a strategic landing position near the Inner Harbor
- The structure and its walkways should provide the most direct connections feasible to the Rock & Roll Hall of Fame, the Great Lakes Science Center, the First Energy (Cleveland Browns) Stadium, and other destinations further north, east and west
- The bridge should be pedestrian and bicycle friendly for users of all abilities
- A building connecting the Science Center with the Rock Hall similar the one proposed in the 2012 Cleveland Lakefront Plan should be considered.
- The land bridge should contain an enclosed, all-season walkway within the structure connecting the Mall and Convention Center and adjacent buildings with the Science Center and the Rock Hall and the building connecting them with minimal restriction of the views along the bridge.
- If a building north of City Hall is considered, it should be situated between the land bridge and East 9th Street, with an enclosed east-west walkway connecting the Amtrak Station and the RTA’s North Coast Station with each other, and they in turn with the land bridge’s enclosed walkway.

Items GRC considered in developing a concept plan for a land bridge include:

- The need to avoid the Memorial Shoreway’s incline to the west
- The need to avoid the entrance/exit ramps to/from the Shoreway and East 9th Street that incline to the east
- Maintaining the minimum required clearances above the rail lines, the Shoreway, Erieside Avenue and other roadways
- Minimizing impacts to the existing rail, freeway and road networks
- Prioritizing the sight lines from all areas along the Mall and the Harbor, and along the land bridge itself
- The view from the Convention Center windows below the bridge
- The design of the walkways to align with and handle the volumes of use relative to their destinations
- Maintaining a near-level grade of the enclosed walkway for accessible use with stairs and elevators at either end to reach all destinations
Considering these and other design guidelines, the Green Ribbon Coalition developed concept plans for a land bridge that extends the Group Mall Plan northward, buries the freeway, and incorporates an enclosed walkway within the structure. Specific elements include:

- Closing the gap between the Mall and North Coast Harbor with 5.3 acres of new green space
- Maintaining a shallow grade along the Mall’s east promenade alignment at 5.4%, and along the enclosed walkway alignment at 4.5%
- An enclosed walkway beginning at the Convention Center’s Ballroom level at one end and traversing under the land bridge for half its distance before rising through its surface and tying into a two-story glass-walled building connecting the Science Center and the Rock Hall on the other end. The walkway lands on the roof of the building where stairs and an elevator take pedestrians to the street and lower levels
- Incorporating the Mall’s promenades into the design of the bridge with the East Promenade continuing along its current alignment
- Combining the walkways with stairs, ramps or elevators that enable their use by persons of all abilities

A land bridge will allow free flowing access between downtown and the lakefront while its surface itself becomes a destination. (See Figure 4) This “Mall D” can increase the usage of the existing malls where activity is lagging due to the lack of a destination. And, it can act as a catalyst for development opportunities around the malls and the harbor – including the area north of the Science Center and the Browns Stadium. In the pages that follow, we will examine in more detail specific elements related to the design and features of a structure.

GRC believes it has developed a concept plan that captures these and other important elements that make this proposal worth consideration for further study of its design feasibility, economic impacts, and estimated costs.
INTRODUCTION

Extending the Cleveland Mall northward from the 1903 Cleveland Group Plan has been discussed for decades. The Group Plan is also known as the Burnham Plan, after famed architect and urban designer Daniel Burnham. Burnham had managed the construction of the 1893 World’s Columbian Exposition in Chicago and co-authored the 1909 Plan of Chicago. Burnham, along with architects Arnold W. Brunner and John M. Carrere worked together on the design of the Cleveland Group Plan, which consists of a large, central mall flanked by several important civic and government buildings built in the neoclassical style between 1910 and 1957. (See Figure 5)

Recognized as one of the best examples of the City Beautiful Movement, The Cleveland Group Plan is considered the earliest and most fully realized plans for a major city outside of Washington D.C. The strategy of the Plan was to create an iconic gateway leading from a new railroad depot at the lakefront to Public Square. The rail station was never realized however, as the Union Terminal was built at the southwest quadrant of Public Square instead, resulting in the 50-foot bluff overlooking the rail and highway infrastructure below the Mall and the separation of the city’s civic center from the lakefront attractions that evolved over the next 100 years. (See Figure 6)

As the Group Plan’s vision along the Mall was being realized, the downtown lakefront provided little as a public destination besides docking for passenger ships, and with a restaurant and a short-lived marina along the 9th Street Pier. In 1931 the Cleveland Municipal Stadium was built on reclaimed land between East 9th and West 3rd Streets. In 1936 and 1937 the successful Great Lakes Exposition extended from the Mall to the Stadium and from there eastward on 135 acres, but little that was built remained after its close. Fifty years afterwards, little development occurred until the large parking area between the stadium and East 9th was excavated to create North Coast Harbor and Voinovich Park in 1988. In 1995 the Rock and Roll Hall of Fame and Museum opened, followed by the Great Lakes Science Center in 1996.
In 1997 First Energy Stadium replaced the aging Municipal Stadium. In 2016 the restaurant Nuevo Modern Mex opened on the 9th Street Pier. Soon to open nearby is Harbor Verandas Apartments with restaurants and retail on its first floor.

Today, the view from the north end of the Mall leaves one with little incentive to explore these destinations by foot, (See Figure 7) while the Mall itself lacks the activity it deserves for such an important public space. To reach lakefront destinations from downtown, pedestrians are forced to walk along East 9th or West 3rd Streets, navigating the Shoreway’s entrance and exit ramps.
Over the years, a range of designs have been proposed combining different bridge and building structures to provide an alternative to these routes, to close the gap between downtown and the lakefront, and to strengthen the connection between these important destinations. Among these proposals was the Progressive Tower, designed in 1987 to be the headquarters for the Progressive Insurance Company. (See Figure 8) The project incorporated a connection with the lakefront and was recognized as a visual landmark for the city. The project was canceled in 1991 however, as the company built its new headquarters in the suburb of Mayfield Village.

Among more recent proposals were entrants to the 2009 Cleveland Design Competition for a new Lakefront Station. The competition sought design proposals for a Multi-Modal Transit Center with a pedestrian connection from downtown’s Civic Center to North Coast Harbor. The competition’s winning proposal was of a ultra-modern, wavy-terraced design. (See Figure 9) The concept had an impressive look to it, although it seemed to prioritize form over function while incurring considerable construction costs.
In 2011, Cleveland’s Group Plan Commission did a commendable job identifying ways to improve the pedestrian experience along the Mall. However, it fell short with its recommendation to build a narrow, “iconic” bridge connecting the Mall to the harbor area. In 2012 the Cleveland Lakefront Plan incorporated a multi-modal transportation center into the planning. Later, a cable-stayed bridge designed by Boston architect Miguel Rosales was selected as the preferred bridge design. (See figures 10 & 11)

Figure 10: Pedestrian bridge design by Boston architect Miguel Rosales  
Figure 11: Plan of Rosales’ pedestrian bridge

More recently, the City of Cleveland determined that there may be a much more feasible option than the Rosales design, and that other alternatives need to be explored, while continuing to consider a multimodal transportation center and other buildings north of City Hall. The Green Ribbon Coalition agrees.

Other cities are burying unsightly infrastructure while working to connect their city centers with their waterfronts. “Iconic” structures such as the proposed cable-stayed bridge are better suited where the features they traverse are meant to be highlighted, such as a river or sea channel. Cities like St. Louis, Seattle, and Philadelphia are capping their railways and freeways while re-connecting their downtowns with their waterfronts. Cleveland should do the same.

Following are several rail or highway cap projects in the U.S. that Cleveland can learn from. In Chicago, large parking garages and a rail yard were covered in 2004 with the 24.5 acre Millenium Park, connecting its downtown with Grant Park long the lakefront. In St. Louis, Interstate 44 was capped in 2018 as part of its Gateway Arch Park renovation and expansion. (See Figure 12)
Figure 12: Rail and freeway cap projects in other cities
A 5.2 acre park that was created in Dallas for $51 million in 2012 and a 3-acre park that’s in planning in Pittsburgh are two freeway cap projects designed to connect their downtowns with adjacent neighborhoods. Pittsburgh’s I-579 “Cap” project is estimated to cost $26.4 million, with $19 million of the funding coming from a federal Transportation Investment Generating Economic Recovery (TIGER) grant.

In Seattle, Olympic Sculpture Park, completed in 2007, traverses topography similar to Cleveland’s. Designed by Weiss/Manfredi architechs and “Envisioned as a new model for an urban sculpture park, the project is located on a industrial site at the water’s edge. The design creates a continuous constructed landscape for art, forms an uninterrupted Z-shaped “green” platform, and descends 40 feet from the city to the water, capitalizing on views of the skyline and Elliot Bay and rising over the existing infrastructure to reconnect the urban core to the revitalized waterfront.

“An exhibition pavilion provides space for art, performances and educational programming. From this pavilion, the pedestrian route descends to the water, linking three new archetypal landscapes of the northwest: a dense temperate evergreen forest, a deciduous forest and a shoreline garden. The design not only brings sculpture outside of the museum walls but brings the park itself into the landscape of the city.”

The City of Philadelphia is also similar to Cleveland with freeway and roadway challenges that obstruct access to their waterfront, however, like our city, they are seeking a connection from their central mall area. Their city must also deal with inconsistent elevation changes in their infrastructure both parallel and perpendicular from their downtown, in their case, to the historic Penn’s Landing area along the Delaware River. (See Figure 14) Conceptual designs show how their challenge is being meet with a park that will cap Interstate 95 and Columbus Boulevard, reconnecting Philadelphia’s City Center with its riverfront.
The 12-acre Penn’s Landing Cap and Civic Space project is part of a fully funded $225 million development initiative that includes a pedestrian bridge and recreational trails along the river. The park will include a new skating rink, water features, a café and a variety of other active and passive uses. (See Figures 15-17) In addition to these significant public improvements, the project is expected to generate approximately $1.6 billion of new revenues benefiting the City, School District, and Commonwealth. Potential future development includes two parcels that could bring 1,500 new housing units, 500 hotel rooms, and over 100,000 sq. ft. of retail, dining, and entertainment to the waterfront.

The design process for the project is expected to be completed in 2019, while construction is expected to take three years. To learn more about the project, visit www.delawareriverwaterfront.com.
Figure 15: Rendering of Philadelphia's Penn Landing Project showing a 4-acre cap over I-95 and Columbus Blvd in the foreground
Figure 16: Rendering of Philadelphia’s Penn Landing Project showing the gently-sloping 8-acre civic space from Columbus Blvd to the Delaware River.
Figure 17: Ground level renderings of Philadelphia’s Penn Landing Project
In addition to the examples cited earlier, the Green Ribbon Coalition has been studying the challenge of connecting its downtown with its lakefront since the 1980’s through one of its three precursors, the Cleveland Waterfront Coalition. GRC recognizes that the challenge of extending the Mall northward has long been complicated by the rail lines and roadways between the Mall and the optimal landing area near the lakefront. The promenade from the 1936-37 Great Lakes Exposition has often been cited when discussing a connection from the Mall to the lakefront. However, the structure began below the Mall’s street level and its path was unobstructed by the Cleveland Memorial Shoreway that exists today.

Figure 18: Land Bridge Concept Plan in context with the 1903 Group Plan
The GRC is examining the feasibility of the land bridge starting from the Mall’s street level, spanning across the rail lines and the Shoreway before landing in front of the museums and other harbor area destinations, while also maintaining a consistent slope to the structure and providing unobstructed views to the lakefront. GRC’s concept design respects the 1903 Group Plan, as it carries most of the width of the Mall northward and its East Promenade along its existing alignment before landing in front of the Science Center and the Browns Stadium. (See Figure 18) The structure also ties into the Rock & Roll Hall of Fame, the Harbor itself, and other destinations further east with the east side of the bridge landing between the museums. In the pages ahead, we explain how we developed the design of the land bridge and the museum connector building to tie in with their surroundings, as shown in Figure 19.
CONCEPT PLAN DEVELOPMENT

In developing a concept plan, the Green Ribbon Coalition first examined prior plans, studies and proposals related to connecting the city’s downtown with its lakefront. GRC also solicited input from a number of public, nonprofit, academic, and private stakeholders. As noted in prior studies, GRC found that the primary views and destinations from the Mall are clustered around North Coast Harbor. For this reason, GRC believes the land bridge should align along a Cleveland Mall to Inner Harbor axis. (See Figure 20) Equally important are the views looking back at the Mall, as destinations downtown become more accessible to visitors along the lakefront.

Figure 20: Destinations and viewsheds from the Mall and Convention Center
Recent proposals made the connection to the harbor area with a narrow bridge beginning from the Mall’s East Promenade. GRC is proposing a land bridge that is an extension of nearly the entire width of the Mall. Figure 21 is a conceptual drawing of how that bridge might look. It becomes obvious however, that the bridge’s alignment is restricted by the Browns Stadium, Erieside Avenue, the Shoreway’s incline to the west, and by the proposed Multimodal Transportation Center and the E. 9th Street exit/entrance ramps to the east. In the pages that follow, we look at these barriers in greater detail towards developing a more realistic concept plan.

Figure 21: Expansive concept design of potential land bridge
By looking at the existing infrastructure and their alignments with one another, we find that the Inner Harbor’s bulkheads were designed to align with the Group Plan and the Mall. (See Figure 22) And that the Science Center and Rock Hall were built along these alignments. In order to design a structure that integrates with this existing infrastructure, it was determined that the land bridge should reflect these alignments as well.

Beginning with the west side of the land bridge, the structure needs to keep to the east of the Shoreway’s westbound incline.

Figure 22: Mall-Harbor structural alignments
This challenge can be solved by aligning only the Mall’s East Promenade northward across the freeway, keeping the structure to the east of the Shoreway’s 600’ elevation level. (See Figure 23) Such an alignment utilizes the sight line along the promenade with its focus on the Science Center’s wind turbine. Here, the structure’s western edge circumvents the wind turbine’s base before landing in front of the Science Center and Browns Stadium. The edge of the structure at the Mall’s western end is extended 90 feet before turning and aligning with the eastern-most bulkhead of the Inner Harbor, providing views along its edge that are in-line with the Rock & Roll Hall of Fame.

Figure 23: Land Bridge structural alignments – western edge
In Figure 24, the north-eastern edge of the structure also aligns with the inner harbor’s eastern bulkhead, while the south-eastern edge follows a direct north-south alignment after a 90’ extension off the eastern end of the Mall. These alignments keep the structure to the west of the exit and entrance ramps to/from East 9th Street while allowing enough room for a proposed multimodal transportation center or other structure between the RTA rail line and the Shoreway. A building connecting the Science Center and Rock Hall similar to one identified in the 2012 Cleveland Lakefront Plan is proposed in these concept plans. (See Figure 25)

Figure 24: Land Bridge structural alignments – eastern edge
In addition to expanding and connecting the museums, the connector building can receive an enclosed pedestrian walkway that traverses the land bridge paralleling its north-south eastern edge. The walkway connects with the convention center where a new stairway and elevator structure is designed to reach the Mall level. After maintaining a minimum 23’ height above the rail lines and 17.5’ height above the Shoreway, the bridge increases its slope from 5.4% along its east promenade axis to 10% north of Erieside Avenue as it descends to ground level in front of the Science Center. The slope increases from 4.5% along its enclosed walkway alignment to 12% in front of the connector building.

Figure 25: Land Bridge structural elements – north end and Enclosed Pedestrian Walkway
Walkways, stairways and ramps are depicted in Figures 26 & 27. The 35' width of the Mall’s promenades are carried into the design of the land bridge. An east-west walkway traverses the structure’s northern edge where access through the enclosed walkway is made. As the degree of slope of the bridge increases as it descends north of Erieside Avenue, switchbacks are incorporated into the design for accessible and bicycle use. In addition to the pedestrian, accessible and bicycle facilities connecting with the Science Center, the new connector building, and the promenade along the harbor, other connections are made to destinations further east and west, including the Browns Stadium to the west and via the walkway in front of the Rock & Roll Hall of Fame to destinations further east.

Figure 26: Land Bridge concept design – Overall Plan
If a multimodal transportation center with retail, a hotel, or other combination of facilities north of City Hall and Willard Park Garage are considered, they should connect with the land bridge’s enclosed and open walkways. Not shown are potential walkways from the garage to the land bridge, or to a potential building to the north. Also not shown is a potential parking structure under the land bridge where the current Amtrak parking lot exists, or of a vertical connector from the parking structure and the Amtrak Station to the land bridge above. Whatever is decided to be built between the Amtrak Station and East 9th Street, an enclosed east-west walkway should be considered to connect the Amtrak and RTA stations with each other and with the land bridge’s enclosed walkway. Doing so will increase transportation options and the marketability of the surrounding destinations.
Figure 28 below shows the open area between the Science Center and Rock Hall where a building has been proposed by the city to expand and connect the museums and include retail destinations. GRC is proposing a glass, two-story building connecting the structures in a similar manner as the two-story building proposed in the 2012 Cleveland Downtown Lakefront Plan. (See Figure 29) One major difference, however, is that the building being proposed by GRC runs straight across between the museums in order to align with the land bridge vs the V-shaped building in the 2012 plan. (See Figure 30)

An open area through the building at the street level maintains an open view with access to the inner harbor. (See Figure 31) Although views of the harbor between the museums may be restricted by the building slightly from Erieside Avenue and the Shoreway, those views are more than compensated by pedestrians coming from downtown via the land bridge.

The lower floor of the building is level with the Science Center and Rock Hall lower levels and the harbor’s promenade, while the first or main floor is level with the museum’s main entrances at Erieside Avenue. The lower level provides an enclosed connection between the museums with access to the Science Center’s parking garage and adds about 30,000 square feet of unobstructed space for expansion of both museums. (See Figure 32)

The lower floor of the building has a slight offset in elevation along its 370 foot length due to the Rock Hall’s lower level being 1.5 feet lower in elevation than the Science Center’s. At the first or street level, the Rock Hall’s first floor is only 0.5 feet lower in elevation than the Science Center’s.

In this concept plan version, the building’s main or street level connects with the Science Center but does not run all the way across to the Rock Hall, providing an open area that doesn’t obstruct views of the Rock Hall from the south while expanding its plaza area by 6,800 square feet with an overlook to the Harbor. The building’s street level adds about 12,700 square feet of space adjacent to the Science Center and about 7,400 square feet next to the Rock Hall’s Plaza for at total of more than 50,000 square feet of enclosed building space.
The enclosed walkway lands on the roof of the connector building. Here, the 20,000 square-foot roof can act as a public viewing and entertainment deck, accessible by the walkway and via stairs and an elevator that take pedestrians between the deck to the interior of the building and the street and harbor levels outside.

Figure 30: Connector Building – Upper Level
Figure 32: Connector Building – Lower Level
The 36’ wide space under the building’s deck at the street level contains stairs at the northern end that lead to the harbor’s promenade, similar to what exists now but with more comfortable stair spacing. When viewed from the harbor, this space can provide the effect of a gateway to the downtown area beyond. (See Figure 33)

![Connector Building rendering - view from Harbor](image)

**Figure 33: Connector Building rendering - view from Harbor**

An alternative design of the connector building is shown in Figure 34. This configuration is similar to what is being proposed by the Rock Hall, with the building running all the way along the lower level without open stairs leading down to the promenade. Here however, we envision the building to remain straight across, not curved, to allow room for the stairs coming down from the land bridge and the enclosed walkway above. Considering the public nature of the harbor area, GRC believes that a combination of these and other potential alternatives should be further explored before committing to a specific design for the connector building.
The land bridge adds about 5.35 acres of landscape to the area, a welcome addition of green across the large expanse of grey infrastructure. If adding the 1.25 acres where it overlaps with the existing green space near the museums, the total acreage of the structure is about 6.6 acres. (See Figure 35) The view from the Convention Center’s windows at the ballroom level below the land bridge remains the same between the Browns Stadium and the Science Center and to the west. The view would be reduced somewhat looking eastward though, as it would be restricted by the support columns, retaining walls, and the underside of the bridge.
This minor loss of view would be compensated however, with the enclosed walkway extending from the ballroom level across to and connecting with the museum buildings, as well as by gaining direct access to the land bridge above. The structure could allow more light to the convention center windows below, if desired, by creating an open or glass covered area on the land bridge above the windows. The plan in Figure 36 identifies the sectional elevation locations shown in Figures 37 & 38 where the structural components of the land bridge are better illustrated.
The land bridge maintains a consistent 5.4% slope along the Mall’s East Promenade axis as it clears the rail lines and Shoreway. After crossing Erieside Avenue and circumventing the wind turbine, stairs bring pedestrians in alignment with the Science Center’s main entrance and the Browns Stadium’s eastern gates. This new route facilitates foot traffic to and from the stadium as it supplants the pedestrian bridges below Mall C that have been closed indefinitely. Adjacent to the stairs, as the land bridge increases its slope to reach ground level, a 10’ wide switchback is designed for accessible and bicycle use. After a consistent slope of 4.5% along the enclosed walkway alignment, a similar switchback and stairway are designed in front of the Connector Building.
Note: Elevations are approximate. To be verified in field.

Figure 37: Sectional Elevations along East Promenade alignment
Figure 38: Sectional Elevations along Enclosed Walkway alignment

Note: Elevations are approximate. To be verified in field.
To better illustrate how the land bridge and connector building would integrate with the existing infrastructure, a 1:500 scale model was built. (See Figure 39) The suspended part of the land bridge is designed with an estimated girder and deck thickness of 42”, with a soil depth of another 18”. The enclosed walkway’s girder and deck is estimated at 30”, while its interior height is 102” with another 48” gabled roof opening. The walkway begins at the Ballroom Level of the Convention Center by either modifying the existing emergency stairwell or by building a new structure. The structure contains an elevator that, along with the stairwell, transports pedestrians between the Mall and Ballroom levels.

The walkway begins at the Ballroom level at an elevation of about 610 feet then increases its slope slightly to clear the rail lines before extending 945’ across the rail lines, the Shoreway and Erieside Avenue where it joins with the new museum connector building near the same level at 612 feet. The enclosed walkway, like the new building, is constructed with glass walls to increase visibility from within and through the structure. The walkway is in effect an extension of the Convention Center, the Medical Mart and the adjoining hotels while at the same time being fully accessible by the general public.
A landscaped plan view of the land bridge is illustrated in Figure 40, while two ground-level graphic renderings are shown in Figures 41 & 42.

Figure 40: Landscaped Plan View
Figure 41: Rendering looking north along the East Promenade
Figure 42: Rendering looking north towards the Science Center and Rock Hall
These concept plans suggest only major design features that include extending the Mall’s promenades with their benches and other landscaping features into its design. There are other landscaping and design elements that should be explored to increase the function and aesthetics of such an expansive public space, including innovative methods to capture and treat stormwater runoff. Philadelphia’s Penn’s Landing project is an example, among others, worth further examination of creative design elements. Ideas for Cleveland include an amphitheater, water fountains, ornamental and sculptor gardens, and Great Lakes, Rock & Roll or Cleveland Browns themed exhibits. Potential programming events include festivals, and theater or acoustic performances. Examples of various design elements from other cities are shown below, followed by an aerial rendering of the GRC land bridge proposal where features similar to these can be envisioned. (Figure 43)
Figure 43: Aerial rendering of proposed Land Bridge
NEXT STEPS & RECOMMENDATIONS

The Green Ribbon Coalition believes it has developed a concept plan for a land bridge that considers the historic character of the existing landscape, the primary destinations that visitors and the general public want to experience, and the economic impacts that the city and the region can realize throughout the twenty-first century.

In the months ahead, GRC will continue to meet with city, county and other public and private land use stakeholders to gain feedback as we further refine this proposal. The GRC also invites other planners, architects, business and community organizations, and the public at large to comment on this proposal.

For too long, the city of Cleveland has turned its back on our lakefront. We now have an opportunity to build on the 1903 Group Plan, connect our downtown with our lakefront, and continue to grow as a destination city where people want to live, work, visit and invest.

GRC believes it has developed a plan that helps the city realize these goals and is looking forward to working with the City of Cleveland, the Group Plan Commission, Cuyahoga County and other partners on refining elements of this preliminary plan and beginning the process for further study to determine its design feasibility, economic impacts, and estimated costs.